TAF and TAC++: Source-to-
source transformation in
Fortran and C

Ralf Giering, Thomas Kaminski,
and Michael Vof3beck

Opt

Web: http://www.FastOpt.com

DMV, Rostock, September 2003



Outline

* FastOpt tools: TAF
* FastOpt projects
* FastOpt tools: TAC++

e Conclusions

DMV, Rostock, September 2003



TAF: Transformation
of Algorithms in Fortran

Source-to-source translator for Fortran-77/95
Commercial successor of TAMC

Forward and reverse mode (1° derivatives):
Tangent linear and adjoint models

Scalar and vector mode

Efficient Hessian (2™ derivative) code
by applying TAF twice (e.g. forward over reverse)

Command line program with many options
TAF-Directives are Fortran comments

Extensive and complex code analyses
(similar to optimising compilers)

Generated code is structured and well readable

DMV, Rostock, September 2003



TAF
More features

Generation of flexible storing/reading scheme for
required variables triggered by TAF init and store
directives

Generation of checkpointing scheme triggered by
combination of TAF init and store directives

Generation of efficient storing/reading scheme
(Christianson, 1996, 1998) for adjoints of converging
iterations triggered by TAF loop directive

TAF flow directives for black-box routines,
or to include user provided derivative code
(exploit self-adjointness, MPI wrappers, etc...)

Automatic Sparsity Detection

Basic support for MPI and OpenMP

DMV, Rostock, September 2003 Opt



TAF
Ongoing Development

* TAF is constantly being adapted to new Fortran
standards

- Fortran 2000
- OpenMP 2

* TAF code analyses are constantly being extended

* TAF algorithms are constantly being improved and
adapted to the needs of the users

* FastOpt is giving support for TAF users

* FastOpt is offering consulting for AD and further
projects

DMV, Rostock, September 2003



some larger TAF Derivatives

Model (Who) Lines Lang TLM ADM Ckp HES
NASA/NCAR (w. Todling & Lin) 87'000 F90 2.7 6.8 2lev

MOMS3 (Galanti & Tziperman) 50'000 F77 Yes 4.6 2 lev

MITGCM (ECCO Consortium) 100'000 F77 1.8 5.5 3lev| 11.0/1
BETHY (w. Knorr, Rayner, Scholze) 5'400 F90 1.5 3.6 2lev] 12.5/5
Nav.-Stokes-Solver (Hinze, Slawig) 450 F77 2.0 steady

NSC2KE 2'500 F77 2.4 3.4 steady 9.8/1
HB_AIRFOIL (Thomas & Hall) 8'000 F90 3.0

‘Lines: total number of Fortran lines without comments
‘Numbers for TLM and ADM give CPU time for (function + gradient)

relative to forward model

- HES format: CPU time for Hessian * n vectors rel. t. forw. model/ n
* 2 (3) level checkpointing costs 1 (2) additional model run(s)

DMV, Rostock, September 2003

Opt



Performance compared
to hand coded adjoints

Code Hand TAF/TAMC relativ
EPT (MINPACK-2) 1.5 1.9 26%
GL1 (MINPACK-2) 1.5 1.7 13%
GL2 (MINPACK-2) 2.1 1.3 -40%
MSA (MINPACK-2) 1.75 1.6 -9%
PJB (MINPACK-2) 1.75 2.2 +25%
SSC (MINPACK-2) 1.18 1.13 -5%
Nav.-Stokes (H & S) 1.9 1.3 -30%

=> Performance of TAF generated adjoints is

comparable to that of hand written adjoints

DMV, Rostock, September 2003



Outline

* FastOpt tools: TAF
* FastOpt projects
* FastOpt tools: TAC++

e Conclusions

DMV, Rostock, September 2003



Ocean Data Assimilation
ECCO Consortium

e MIT-GCM: Primitive Equation Model of General Oceanic
Circulation

* Various Configurations ~ 100'000 lines of Fortran 77
(without comments)

* Uses MPI and OpenMP for parallelisation

* Tangent Linear, Adjoint, Hessian code generated by TAF
Only hand written code for communication wrappers

* Adjoint uses 2 or 3 level checkpointing

* Is used for Variational Data Assimilation, Uncertainty
Analysis, Kalman Filter and Sensitivity Studies

e AD for further compoments in progress:
biogeochemistry and atmosphere

DMV, Rostock, September 2003 Opt



Courtesy: Patrick Heimbach, MIT

ECCO state estimation: problem size

e grid @ 1° x1° resolution: ng - ny - n, =360 - 160 - 23 1, 324, 800
e model state: 17 3D + 2 2D fields ~ 2.107
s timesteps: 10 years @ 1-hour time step 87,600
e control vector ~ 1-10°
— initial temperature (T), salinity (S)
— time-dependent surface forcing (every 2 days)
» cost function: observational elements: ~ 1.10°
>
— 80 processors (15 nodes) @ 512MB per proc.
- 1/O: 10 GB input, 35GB output
— time: 59 hours per iteration @ 60 processors
>
— 1/10°x1/10° resol., 1000 years, full model error covariance ...
heimbach@rmit edu e hitp #/mitgem org Short Gourse on Data Assimilation & WHOI & May 2003

DMV, Rostock, September 2003



Aerodynamics: NSC2KE
with T. Slawig, TU-Berlin

* Model: NSC2KE by Bijan Mohammadi (1994)

e Mixed finite volume-finite element Galerkin CFD
model

* 2 dimensional on unstructured grid
* Euler Part with Roe-, Osher-, or Kinematic solver
* K-epsilon turbulence model
* 4™ order Runge Kutta
e 2500 lines of Fortran 77 code without comments
* Previous AD applications of this code by:
- Mohammadi et al. (1994) w/Odyssée (Rostaing et al, 1993)

- Hovland et al. (1997), Slawig (2001) w/ADIFOR (Bischof et
al. '96)

- S. Ulbrich (2001) w/TAMC (Giering, 1997)

DMV, Rostock, September 2003 Opt



Aerodynamics
Automatic Differentiation of NSC2KE

Adjoint:

16 store directives inserted

* Used TAF iteration directive to trigger efficient
write/read scheme (Christianson, 1996, 1998):
stores only steady state values of required variables

* Required variables kept in memory: 1.5 MB

* CPU(gradient+function)/CPU(function) = 3.4
Tangent linear:

e CPU(derivative+function)/CPU(function) = 2.4
Hessian:

e Forward over Reverse mode

e CPU(Hessian*1 vector)/CPU(function) = 9.8
DMV, Rostock, September 2003



Outline

* FastOpt tools: TAF
* FastOpt projects
* FastOpt tools: TAC++

e Conclusions

DMV, Rostock, September 2003



Reverse mode

* Required variables must be provided in
reverse order of computation

* Required variables can be taped
(stored/read) or recomputed

* Efficient code uses a combination of taping
and recomputation

e TAF, TAC++ do recomputations by default,
Taping is triggered by directives in a very
flexible way

DMV, Rostock, September 2003



TAC++, Transformation of
Algorithms in C++

e Source-to-source Automatic Differentiation
(AD) tool for C++

e First reverse mode source-to-source C-tool

* Uses same algorithm as our Fortran tool
TAF

- Can achieve comparable performance
- will be as flexible (directives, options)
* First prototype for tool design experiments

DMV, Rostock, September 2003



Source-to-source AD

e Components

- Front end (TAF, TAC++)
* Scanner, parser, semantic analysis

- Normalization (TAF, TAC++)

- Data dependence (TAF)

- Data flow (global) (TAF)

- Transformation (TAF, TAC++)

- Back end (TAF, TAC++)

e Source code writer

DMV, Rostock, September 2003



TAC++ feasibilty test

* 2D Euler model code EULSOLDO by Jens-Domenic
Miiller (1991), thanks to Paul Cusdin!

- Roe flux solver
— Fortran-77 code converted with f2c

- cpp preprocessed to be handled by TAC++
e Adjoint C code generated by TAC++

- Adjoint code verified

- Performance of code almost comparable with
TAF generated code

DMV, Rostock, September 2003 Opt



TAC++ demo

e tac++ roeflux.c

DMV, Rostock, September 2003



Challenges in C++/Fortran-90

* Dynamic memory
* Structured types
* Accessing private variables

* Pointers
(static:TAF)

e Generic functions

* Operator overloading

DMV, Rostock, September 2003

(TAF)
(TAF)



Additional challenges in C++

e Classes

— Constructures, destructures
— Heritage

— Virtual methods

* Templates

e STL, Standard Template Library

- Class complex

- Class valarray

* Implicit type casts

* Exception handling

DMV, Rostock, September 2003



Conclusions

* TAF has generated efficient derivative code for large
models

* FastOpt has started to develop a source-to-source AD-
tool for C++ programs: TAC++

 prototype already useful for real applications

* Reverse mode was main challenge, forward mode will be
easier

* Handles subset of C: further development driven by
applications

* Need for code preparations will gradually decrease

* TAC++ and TAF (Fortran-2000) development will go
hand in hand

DMV, Rostock, September 2003 Opt



