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TAF: Transformation
of Algorithms in Fortran

Source-to-source translator for Fortran-77/95
Commercial successor of TAMC

Forward and reverse mode (1° derivatives):
Tangent linear and adjoint models

Scalar and vector mode

Efficient Hessian (2™ derivative) code
by applying TAF twice (e.g. forward over reverse)

Command line program with many options
TAF-Directives are Fortran comments

Extensive and complex code analyses
(similar to optimising compilers)

Generated code is structured and well readable
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TAF
More features

Generation of flexible storing/reading scheme for
required variables triggered by TAF init and store
directives

Generation of checkpointing scheme triggered by
combination of TAF init and store directives

Generation of efficient storing/reading scheme
(Christianson, 1996, 1998) for adjoints of converging
iterations triggered by TAF loop directive

TAF flow directives for black-box routines,
or to include user provided derivative code
(exploit self-adjointness, MPI wrappers, etc...)

Automatic Sparsity Detection

Basic support for MPI and OpenMP
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TAF
Ongoing Development

* TAF is constantly being adapted to new Fortran
standards

- Fortran 2000
- OpenMP 2

* TAF code analyses are constantly being extended

* TAF algorithms are constantly being improved and
adapted to the needs of the users

* FastOpt is giving support for TAF users

* FastOpt is offering consulting for AD and further
projects
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some larger TAF Derivatives

Model (Who) Lines Lang TLM ADM Ckp HES
NASA/NCAR (w. Todling & Lin) 87'000 F90 2.7 6.8 2lev

MOMS3 (Galanti & Tziperman) 50'000 F77 Yes 4.6 2 lev

MITGCM (ECCO Consortium) 100'000 F77 1.8 5.5 3lev| 11.0/1
BETHY (w. Knorr, Rayner, Scholze) 5'400 F90 1.5 3.6 2lev] 12.5/5
Nav.-Stokes-Solver (Hinze, Slawig) 450 F77 2.0 steady

NSC2KE 2'500 F77 2.4 3.4 steady 9.8/1
HB_AIRFOIL (Thomas & Hall) 8'000 F90 3.0

‘Lines: total number of Fortran lines without comments
‘Numbers for TLM and ADM give CPU time for (function + gradient)

relative to forward model

- HES format: CPU time for Hessian * n vectors rel. t. forw. model/ n
* 2 (3) level checkpointing costs 1 (2) additional model run(s)

DMV, Rostock, September 2003

Opt



Performance compared
to hand coded adjoints

Code Hand TAF/TAMC relativ
EPT (MINPACK-2) 1.5 1.9 26%
GL1 (MINPACK-2) 1.5 1.7 13%
GL2 (MINPACK-2) 2.1 1.3 -40%
MSA (MINPACK-2) 1.75 1.6 -9%
PJB (MINPACK-2) 1.75 2.2 +25%
SSC (MINPACK-2) 1.18 1.13 -5%
Nav.-Stokes (H & S) 1.9 1.3 -30%

=> Performance of TAF generated adjoints is

comparable to that of hand written adjoints
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Ocean Data Assimilation
ECCO Consortium

e MIT-GCM: Primitive Equation Model of General Oceanic
Circulation

* Various Configurations ~ 100'000 lines of Fortran 77
(without comments)

* Uses MPI and OpenMP for parallelisation

* Tangent Linear, Adjoint, Hessian code generated by TAF
Only hand written code for communication wrappers

* Adjoint uses 2 or 3 level checkpointing

* Is used for Variational Data Assimilation, Uncertainty
Analysis, Kalman Filter and Sensitivity Studies

e AD for further compoments in progress:
biogeochemistry and atmosphere
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Courtesy: Patrick Heimbach, MIT

ECCO state estimation: problem size

e grid @ 1° x1° resolution: ng - ny - n, =360 - 160 - 23 1, 324, 800
e model state: 17 3D + 2 2D fields ~ 2.107
s timesteps: 10 years @ 1-hour time step 87,600
e control vector ~ 1-10°
— initial temperature (T), salinity (S)
— time-dependent surface forcing (every 2 days)
» cost function: observational elements: ~ 1.10°
>
— 80 processors (15 nodes) @ 512MB per proc.
- 1/O: 10 GB input, 35GB output
— time: 59 hours per iteration @ 60 processors
>
— 1/10°x1/10° resol., 1000 years, full model error covariance ...
heimbach@rmit edu e hitp #/mitgem org Short Gourse on Data Assimilation & WHOI & May 2003
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Aerodynamics: NSC2KE
with T. Slawig, TU-Berlin

* Model: NSC2KE by Bijan Mohammadi (1994)

e Mixed finite volume-finite element Galerkin CFD
model

* 2 dimensional on unstructured grid
* Euler Part with Roe-, Osher-, or Kinematic solver
* K-epsilon turbulence model
* 4™ order Runge Kutta
e 2500 lines of Fortran 77 code without comments
* Previous AD applications of this code by:
- Mohammadi et al. (1994) w/Odyssée (Rostaing et al, 1993)

- Hovland et al. (1997), Slawig (2001) w/ADIFOR (Bischof et
al. '96)

- S. Ulbrich (2001) w/TAMC (Giering, 1997)
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Aerodynamics
Automatic Differentiation of NSC2KE

Adjoint:

16 store directives inserted

* Used TAF iteration directive to trigger efficient
write/read scheme (Christianson, 1996, 1998):
stores only steady state values of required variables

* Required variables kept in memory: 1.5 MB

* CPU(gradient+function)/CPU(function) = 3.4
Tangent linear:

e CPU(derivative+function)/CPU(function) = 2.4
Hessian:

e Forward over Reverse mode

e CPU(Hessian*1 vector)/CPU(function) = 9.8
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Reverse mode

* Required variables must be provided in
reverse order of computation

* Required variables can be taped
(stored/read) or recomputed

* Efficient code uses a combination of taping
and recomputation

e TAF, TAC++ do recomputations by default,
Taping is triggered by directives in a very
flexible way
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TAC++, Transformation of
Algorithms in C++

e Source-to-source Automatic Differentiation
(AD) tool for C++

e First reverse mode source-to-source C-tool

* Uses same algorithm as our Fortran tool
TAF

- Can achieve comparable performance
- will be as flexible (directives, options)
* First prototype for tool design experiments
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Source-to-source AD

e Components

- Front end (TAF, TAC++)
* Scanner, parser, semantic analysis

- Normalization (TAF, TAC++)

- Data dependence (TAF)

- Data flow (global) (TAF)

- Transformation (TAF, TAC++)

- Back end (TAF, TAC++)

e Source code writer
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TAC++ feasibilty test

* 2D Euler model code EULSOLDO by Jens-Domenic
Miiller (1991), thanks to Paul Cusdin!

- Roe flux solver
— Fortran-77 code converted with f2c

- cpp preprocessed to be handled by TAC++
e Adjoint C code generated by TAC++

- Adjoint code verified

- Performance of code almost comparable with
TAF generated code
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TAC++ demo

e tac++ roeflux.c
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Challenges in C++/Fortran-90

* Dynamic memory
* Structured types
* Accessing private variables

* Pointers
(static:TAF)

e Generic functions

* Operator overloading
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Additional challenges in C++

e Classes

— Constructures, destructures
— Heritage

— Virtual methods

* Templates

e STL, Standard Template Library

- Class complex

- Class valarray

* Implicit type casts

* Exception handling
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Conclusions

* TAF has generated efficient derivative code for large
models

* FastOpt has started to develop a source-to-source AD-
tool for C++ programs: TAC++

 prototype already useful for real applications

* Reverse mode was main challenge, forward mode will be
easier

* Handles subset of C: further development driven by
applications

* Need for code preparations will gradually decrease

* TAC++ and TAF (Fortran-2000) development will go
hand in hand
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