
TAF and TAC++: Source-to-
source transformation in

Fortran and C

Ralf Giering, Thomas Kaminski,
and Michael Voßbeck

FastOpt
Web: http://www.FastOpt.com

 DMV, Rostock, September 2003

FastOptDMV, Rostock, September 2003

� FastOpt tools: TAF

� FastOpt projects

� FastOpt tools: TAC++

� Conclusions

Outline

FastOptDMV, Rostock, September 2003

TAF: Transformation
of Algorithms in Fortran

� Source-to-source translator for Fortran-77/95

� Commercial successor of TAMC

� Forward and reverse mode (1st derivatives):
Tangent linear and adjoint models

� Scalar and vector mode

� Efficient Hessian (2nd derivative) code
by applying TAF twice (e.g. forward over reverse)

� Command line program with many options

� TAF-Directives are Fortran comments

� Extensive and complex code analyses
(similar to optimising compilers)

� Generated code is structured and well readable

FastOptDMV, Rostock, September 2003

TAF
More features

� Generation of flexible storing/reading scheme for
required variables triggered by TAF init and store
directives

� Generation of checkpointing scheme triggered by
combination of TAF init and store directives

� Generation of efficient storing/reading scheme
(Christianson, 1996, 1998) for adjoints of converging
iterations triggered by TAF loop directive

� TAF flow directives for black-box routines,
or to include user provided derivative code
(exploit self-adjointness, MPI wrappers, etc...)

� Automatic Sparsity Detection

� Basic support for MPI and OpenMP

FastOptDMV, Rostock, September 2003

TAF
Ongoing Development

� TAF is constantly being adapted to new Fortran
standards

� Fortran 2000

� OpenMP 2

� TAF code analyses are constantly being extended

� TAF algorithms are constantly being improved and
adapted to the needs of the users

� FastOpt is giving support for TAF users

� FastOpt is offering consulting for AD and further
projects

FastOptDMV, Rostock, September 2003

some larger TAF Derivatives

Model (Who) Lines Lang TLM ADM Ckp HES

NASA/NCAR (w. Todling & Lin) 87'000 F90 2.7 6.8 2 lev -

MOM3 (Galanti & Tziperman) 50'000 F77 Yes 4.6 2 lev -

MITGCM (ECCO Consortium) 100'000 F77 1.8 5.5 3 lev 11.0/1

BETHY (w. Knorr, Rayner, Scholze) 5'400 F90 1.5 3.6 2 lev 12.5/5

Nav.-Stokes-Solver (Hinze, Slawig) 450 F77 - 2.0 steady -

NSC2KE 2'500 F77 2.4 3.4 steady 9.8/1

HB_AIRFOIL (Thomas & Hall) 8'000 F90 - 3.0 -

�Lines: total number of Fortran lines without comments

�Numbers for TLM and ADM give CPU time for (function + gradient)
 relative to forward model

� HES format: CPU time for Hessian * n vectors rel. t. forw. model/ n

� 2 (3) level checkpointing costs 1 (2) additional model run(s)

FastOptDMV, Rostock, September 2003

Performance compared
to hand coded adjoints

Code Hand TAF/TAMC relativ
EPT (MINPACK-2) 1.5 1.9 26%
GL1 (MINPACK-2) 1.5 1.7 13%
GL2 (MINPACK-2) 2.1 1.3 -40%
MSA (MINPACK-2) 1.75 1.6 -9%
PJB (MINPACK-2) 1.75 2.2 +25%
SSC (MINPACK-2) 1.18 1.13 -5%
Nav.-Stokes (H & S) 1.9 1.3 -30%

=> Performance of TAF generated adjoints is

 comparable to that of hand written adjoints

FastOptDMV, Rostock, September 2003

Outline

� FastOpt tools: TAF

� FastOpt projects

� FastOpt tools: TAC++

� Conclusions

FastOptDMV, Rostock, September 2003

OverviewOcean Data Assimilation
ECCO Consortium

� MIT-GCM: Primitive Equation Model of General Oceanic
Circulation

� Various Configurations ~ 100'000 lines of Fortran 77
(without comments)

� Uses MPI and OpenMP for parallelisation

� Tangent Linear, Adjoint, Hessian code generated by TAF
Only hand written code for communication wrappers

� Adjoint uses 2 or 3 level checkpointing

� Is used for Variational Data Assimilation, Uncertainty
Analysis, Kalman Filter and Sensitivity Studies

� AD for further compoments in progress:
biogeochemistry and atmosphere

FastOptDMV, Rostock, September 2003

Courtesy: Patrick Heimbach, MIT

FastOptDMV, Rostock, September 2003

OverviewAerodynamics: NSC2KE
with T. Slawig, TU-Berlin

� Model: NSC2KE by Bijan Mohammadi (1994)

� Mixed finite volume-finite element Galerkin CFD
model

� 2 dimensional on unstructured grid

� Euler Part with Roe-, Osher-, or Kinematic solver

� K-epsilon turbulence model

� 4th order Runge Kutta

� 2500 lines of Fortran 77 code without comments

� Previous AD applications of this code by:

� Mohammadi et al. (1994) w/Odyssée (Rostaing et al, 1993)

� Hovland et al. (1997), Slawig (2001) w/ADIFOR (Bischof et
al. '96)

� S. Ulbrich (2001) w/TAMC (Giering, 1997)

FastOptDMV, Rostock, September 2003

OverviewAerodynamics
Automatic Differentiation of NSC2KE

Adjoint:

� 16 store directives inserted

� Used TAF iteration directive to trigger efficient
write/read scheme (Christianson, 1996, 1998):
stores only steady state values of required variables

� Required variables kept in memory: 1.5 MB

� CPU(gradient+function)/CPU(function) = 3.4
Tangent linear:

� CPU(derivative+function)/CPU(function) = 2.4
Hessian:

� Forward over Reverse mode

� CPU(Hessian*1 vector)/CPU(function) = 9.8

FastOptDMV, Rostock, September 2003

Outline

� FastOpt tools: TAF

� FastOpt projects

� FastOpt tools: TAC++

� Conclusions

FastOptDMV, Rostock, September 2003

Reverse mode

� Required variables must be provided in
reverse order of computation

� Required variables can be taped
(stored/read) or recomputed

� Efficient code uses a combination of taping
and recomputation

� TAF, TAC++ do recomputations by default,
Taping is triggered by directives in a very
flexible way

FastOptDMV, Rostock, September 2003

TAC++, Transformation of
Algorithms in C++

� Source-to-source Automatic Differentiation
(AD) tool for C++

� First reverse mode source-to-source C-tool

� Uses same algorithm as our Fortran tool
TAF

� Can achieve comparable performance

� will be as flexible (directives, options)

� First prototype for tool design experiments

FastOptDMV, Rostock, September 2003

Source-to-source AD

� Components

� Front end (TAF,TAC++)

� Scanner, parser, semantic analysis

� Normalization (TAF,TAC++)

� Data dependence (TAF)

� Data flow (global) (TAF)

� Transformation (TAF,TAC++)

� Back end (TAF,TAC++)

� Source code writer

FastOptDMV, Rostock, September 2003

TAC++ feasibilty test

� 2D Euler model code EULSOLDO by Jens-Domenic
Müller (1991), thanks to Paul Cusdin!

� Roe flux solver

� Fortran-77 code converted with f2c

� cpp preprocessed to be handled by TAC++

� Adjoint C code generated by TAC++

� Adjoint code verified

� Performance of code almost comparable with
TAF generated code

FastOptDMV, Rostock, September 2003

TAC++ demo

� tac++ roeflux.c

FastOptDMV, Rostock, September 2003

Challenges in C++/Fortran-90

� Dynamic memory (TAF)

� Structured types (TAF)

� Accessing private variables

� Pointers
(static:TAF)

� Generic functions

� Operator overloading

FastOptDMV, Rostock, September 2003

Additional challenges in C++

� Classes

� Constructures, destructures

� Heritage

� Virtual methods

� Templates

� STL, Standard Template Library

� Class complex

� Class valarray

� Implicit type casts

� Exception handling

FastOptDMV, Rostock, September 2003

Conclusions

� TAF has generated efficient derivative code for large
models

� FastOpt has started to develop a source-to-source AD-
tool for C++ programs: TAC++

� prototype already useful for real applications

� Reverse mode was main challenge, forward mode will be
easier

� Handles subset of C: further development driven by
applications

� Need for code preparations will gradually decrease

� TAC++ and TAF (Fortran-2000) development will go
hand in hand

